Rapid Estimation of Earthquake Source and Ground-Motion Parameters for Earthquake Early Warning Using Data from a Single Three- Component Broadband or Strong-Motion Sensor
نویسنده
چکیده
We propose a new algorithm to rapidly determine earthquake source and ground-motion parameters for earthquake early warning (EEW). This algorithm uses the acceleration, velocity, and displacement waveforms of a single three-component broadband (BB) or strong-motion (SM) sensor to perform real-time earthquake/noise discrimination and near/far source classification. When an earthquake is detected, the algorithm estimates the moment magnitude M, epicentral distance Δ, and peak ground velocity (PGV) at the site of observation. The algorithm was constructed by using an artificial neural network (ANN) approach. Our training and test datasets consist of 2431 three-component SM and BB records of 161 crustal earthquakes in California, Japan, and Taiwan with 3:1 ≤ M ≤ 7:6 at Δ≤ 115 km. First estimates become available at t0 0:25 s after the P pick and are regularly updated. We find that displacement and velocity waveforms are most relevant for the estimation of M and PGV, while acceleration is important for earthquake/noise discrimination. Including site corrections reduces the errors up to 10%. The estimates improve by an additional 10% if we use both the vertical and horizontal components of recorded ground motions. The uncertainties of the predicted parameters decrease with increasing time window length t0; larger magnitude events show a slower decay of these uncertainties than small earthquakes. We compare our approach with the τ c algorithm and find that our prediction errors are around 60% smaller. However, in general there is a limitation to the prediction accuracy an EEW system can provide if based on single-sensor observations.
منابع مشابه
A Strong Ground Motion Catalogue of Selected Records for Shallow Crustal, Near Field Earthquakes in Iran
Understanding strong ground motions in the near-fault areas is important for seismic risk assessment in densely populated areas. In the past, lack of information on strong ground motion for large and moderate earthquakes led to the use of mainly far field large and moderate earthquake records in equations for calculation of the strong ground motion parameters. In this article, we collected and ...
متن کاملSingle station estimation of earthquake early warning parameters by using amplitude envelope curve
In this study, new empirical relationships to estimate key parameters in Earthquake Early Warning (EEW) system including magnitude, epicentral distance and Peak Ground Acceleration (PGA) are introduced based on features of the initial portion of P-wave’s amplitude envelope curve. For this purpose, 226 time series recorded by bore-hole accelerometers of Japanese KiK-net are processed for earthq...
متن کاملESTIMATING THE STRONG-MOTION OF THE DECEMBER 26, 2003 BAM (IRAN), EARTHQUAKE USING STOCHASTIC TECHNIQUES
Abstract : The main objective of this study is estimating the strong motion for the Bam region using the stochastically based seismological models. The two widely used synthetic techniques namely point-source and finite-fault were utilized incorporating the source-path and site parameters into simple function. The decay factor kappa was estimated based on the data obtained from recorded stron...
متن کاملPredicting Structural Response with On-Site Earthquake Early Warning System Using Neural Networks
The on-site earthquake early warning system is under development for the area near the earthquake epicenter to provide information such as earthquake magnitude, the arrival time and the intensity of the strong shaking for free field as well as the structural response, etc. The real-time strong motion signals recorded from Taiwan Strong Motion Instrumentation Program (TSMIP) were used to train n...
متن کاملEarthquake early warning for Bucharest, Romania: Novel and revised scaling relations
[1] The accumulation of strong earthquakes with resembling source mechanisms in the Romanian Vrancea zone, SE Carpathians, allows for designing a simple, cheep and robust earthquake early warning (EEW) system for Bucharest with leading times of about 25 s. A previously established scaling relation for EEW predicts in the range from 1–2 s a ten times higher ground motion amplitude in Bucharest t...
متن کامل